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I. INTRODUCTION 

Nonlinear transient analysis of structures,especially those involving 

material nonlinearities,are highly complicated even for the uniaxial case 

with a simple constitutive model. In the case of the beam bending 

problem for instance, there is a single component of strain 

along the longitudinal beam axis. This axial strain component is assumed 

to vary linearly over the cross-section by virtue of the assumption that plane 

sections remain plane. However, since the stresses are no longer proportional 

to strains in the inelastic range the distribution of stresses can be quite 

complex over the cross-section and along the length of the beam. Thus, for 

a beam which has yielded in a certain region the line of zero stress or strain 

does not coincide with the centroidal axis in that reqion. Hence, in general 

the centroidal axis is not an axis of constant strain for deformations in the 

inelastic range. 

A two-noded beam column element is often used to analyze inelastic 

response of models built up from such elements in conjunction with other 

elements. A linear axial displacement field and a cubic transverse dis- 

placement field are used in arriving at the stiffness properties of such 

an element. If the centroidal axis is used as the reference axis, it 

is not possible to satisfy equilibrium in the inelastic range. The 

same is true of the linear elastic range, if an axis other than the 

centroidal axis is used as the reference axis. Hence, a simple linear 

elastic analysis with an arbitrary reference axis can be used to demon- 

strate the point under consideration. 

Another feature of the nonlinear analysis by the finite element method 

is the necessity of integrating complex distributions of stresses and 

strain energy densities over the volume of the element. Because of the 



complexity of the integrand and the domain of integration, recourse to 

numerical schemes like Gaussian quadratures, Newton-Cotes, etc. has to be 

made in order to obtain approximate estimates of stress resultants and 

total energies. The number of integration points used over the cross- 

section and over the length of the beam element determines the degree of 

approximation. Accordingly approximate estimates of energies yield 

solutions of varying degrees of accuracy which depend upon the order of the 

integration scheme used. For an assessment of the quality of such 

approximate solutions it is necessary that an exact solution to a problem 

be known. Such a problem along with its accompanying exact solution has been 

outlined and a rigorous evaluation of the sensitivity of the quasi-static 

response to the order of the integration scheme is made. For problems, 

especially those involving transient response, for which no exact solutions 

can be obtained, only qualitative estimates of sensitivity can be obtained 

by a comparision of numerical solutions using different orders of integration 

schemes. 



II. BEAM-COLUMN ELEMENT 

In this section the two-noded beam-column element of Fig. 1.a will be 

shown to yield inaccurate results when used to model a beam bending elasti- 

cally about its centroidal axis, but analyzed with respect to another 

reference axis. With the finite element formulation in mind the present 

discussion will be confined to Euler-Bernoulli beams subjected to concen- 

trated shears and moments. For such a beam the total potential energy of 

deformations is given by 

R 

IT = JJ i[$- z 

0 A 

$,2 dAdx - P,w(O)-P2w(a)-Ml $$O)-M2&) 

(1) 
where u and w are the axial and transverse displacements of the reference 

axis and z is measured normal to the-reference axis. Minimization of 71 

with respect to u and w yields 

EI d4w -- 
dx4 

EzA d3, = 0 
dx3 

C2) 

(3) 

as the governing equations (see Appendix A for details). Elimination of u 

from the above two equations yields the well known equilibrium equation 

EI d4w-o 
C>- 

where 

I, in Eq. (5) is the moment of inertia of the cross-section about the 

centroidal axis which is separated from the reference axis by 7. 

Equation (3) integrates to 

- dw 
U=Zdx 1 +cx+c 2 

3 

(6) 



Assume such a beam is to be modeled using. the beam-column element of 

Fig. 1.a. This finite element assumes a cubic transverse displacement 

of the reference axis. For satisfaction of equilibrium, Eq. (6) 

requires that the axial displacement vary quadratically over the length 

of the element. Hence, equilibrium cannot be satisfied by prescribing 

a linearly varying axial displacement field as is done in the case of 

the two noded beam element. As an example, a two noded beam element, 

used to represent a cantilever loaded at its free end with a concentrated 

transverse load P, yields the following results (see Appendix B for 

details): 
U2 = 79, 

e2 = - pR2 
2EIc 

3 
W2=-b1 (3+T Ic > 

C 

These results are correct only for the case 

(7-a). 

(7-b) 

(7-d 

(7-d) 

I =Ic i.e., the reference 

axis for the two noded beam-column element is the centroidal axis. 

On the other hand the same cantilever if modeled with a single beam 

element of Fig. 

satisfaction of 

From this 1 

beam element is 

1.b yields the correct results and ensures a complete 

equilibrium in keeping with the elementary beam theory. 

inear elastic example it can be concluded that a three noded 

necessary to analyze the inelastic response of structures 

built up using frame elements, since in general the reference axis is not 

the neutral axis or an axis of constant axial strain when yielding takes 

place over portions of the element. 

4 



III. SENSITIVITY OF RESPONSE TO APPROXIMATIONS OF ENERGY ESTIMATES 

a. Exact Solution: 

The exact solution of a quasi-static inelastic beam problem will 

be developed in order to demonstrate the sensitivity of the response to the 

order of the integration scheme used in approximate solutions of the 

problem. Consider the cantilever beam of rectangular cross-section of 

Fig. 2.a subjected to a bending moment at its tip. The material of the 

beam is assumed to be linearly elastic--linearly strain hardening as 

shown in Fig. 2.b. For monotonic loading such a material -is conservative 

and hence the principle of the stationary value of the total potential energy 

can be used to obtain the governing Euler-Lagrange equations for the beam. 

Euler-Bernoulli hypotheses imply that 

E(X) = -y 2h!p 
dxL 

From Fig. 2.b 

0 = E,E 

= El~y + E2k 

The total potential energy of the beam of Fig. 2 is given b.v 

where 

IT= 

- "y) 

(8) 

if E<E 
- Y 

if ELE Y 

$ Wldv +/W2dv - 

vl v2 

EE 2 
1 

w1 =2 

M dw 
dx I 

X=R 

(9-a) 

(9-b) 

00) 

(11-a) 



Id2 = !$!i! + + + “Y(E-Ey) 

Vl is the volume of the beam within which the beam is everywhere elast ic and 

V2 is the volume within which the strain at every point exceeds the yield 

strain, E 
Y' 

11-b) 

From purely statical considerations it is obvious that the beam of 

Fig..2 experiences a constant curvature, 
d2w - and,hence,d2 of Fig. 3 is a pure 
dx2 

constant and not a function of x. This can be shown to be true by minimizing 

the total potential energy with respect to,not only w,but also d2, assuming 

apriori that d2 is a function of x. The Euler-Lagrange equation resultinq 

from the variation of TI with respect to w and d2 implies that the curvature, 

d*w -,and d2 are both constants. 
dx2 

The two Euler-Lagrange equations 

- d"'Jd 
9, 2 

(d--$2dx]-2.yd2[I 
e 2 

($)dX]-+=O 

0 dx 

ALo 
dx4 

and the associated boundary conditions 

w(o) = ip = d3wo = 0 
dx3 

and 

(E2-El )eyb(d:-d~)~[Eld~E2(dl-d2)11: dx2 
3 3 d2w(+,, 

are the result of the variation of IT with respect to d2 and w. 

Equations (13) through (14) are satisfied by 

6 

(12) 

(13) 

(14-a) 

(14-b) 



n=ax2 

where 

a=qEY 

[( E ; bd 2) + (1 E2 d2 2 

1Y 1 
- q1 - $1 I] 

&)3 E2 d2 3 

dl 
+ $1 11 - $1 >I 

Use of Eq. (15) into Eq. (12) yields 

t.Y ad2 = - 2 

(15) 

(16) 

(17) 

Substitution of a from Eq. (16) into Eq. (17) yields the cubic equation 

rp3-3(r+s)p-2(1-r)=O (18) 

with 

d2 
p= (q,s 

E2 r=l- E and s= M 
2 (19) 

1 EIEybdl 

For any given values of r and s, Eq. (18) can be solved by trial and error 

to obtain the corresponding value of p. The total strain energy of deformation 

is then given by 

baEldl 

"T= 3 [rp3+(l-r)(l-p3)}(2adl)2-3rcy(l-p2)(2adl)-3E~r(l-p)] (20) 

If the beam is unloaded after being loaded into the inelastic range and if 

it is assumed that unloading takes place elastically then it can be easily 

verified that the recoverable energy of deformation i.s given by 

~~'Elb~dl[~3(adl~2+r2~y2(l-p)-2adl~yr(l-r)(l-p2)+ $l-r)2(l-p3)(adf)J (21) 
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and the energy dissipated in the process of unloading is 

(22) uo=uT-uR 

b. Approximate Numerical Solutions: 

Three numerical solutions to the problem just outlined are obtained via 

the minimization of the total potential energy using the three noded beam 

elements of Fig. 1.b. and using numerical integration schemes of three 

different orders for the computation of the strain energy of deformations [l]. 

The first two schemes use Gaussian quadratures of two different orders in 

that the beam is divided into two strips in one case and into four strips 

in the other case. A two point Gaussian quadrature formula is used in 

each direction (the length and the breadth of the strip). The third scheme 

is the Newton-Cotes scheme which uses a cubic interpolation with four 

points in each direction. The details of these schemes can be found in 

any book on numerical analysis [l]. It must be emphasized however that 

among integration schemes which imply that the integrand can be approximated 

by a polynomial of some order the Gaussian quadrature scheme is the most 

efficient. It is well known for instance that only n Gauss points are 

sufficient to integrate a polynomial of (2n-1) degree exactly while (n+l) 

points are necessary to integrate a polynomial of n-th degree exactly with 

the Newton-Cotes integration scheme. 

Table 1 shows a comparison of the exact response with that predicted 

by the three different integration schemes. Of main interest is the dissipative 

energy. It is obvious from these results that a very high order quadrature 

is necessary for a good correlation with the exact solution especially for 

loads where yielding extends over a major portion of the cross-section of 

the beam. The higher the value of s in Table 1 the more extensive the 

yielding. 



Such large variations in the estimates of deformations and energies for 

a quasi-static case suggest that a similar study be made in connection with 

the nonlinear transient response of structures. Since exact solutions to 

the nonlinear transient response of structures are virtually nonexistent one 

has to rely on a comparison between numerical solutions using different 

integration schemes. 

Figure 4 shows the details of a solid cross-section beam clamped at both 

ends and loaded impulsively at the center by a triangularly varying impulse. 

The material characteristics of this beam are assumed to be as shown in Fig. 2 

with u 
Y 

= 28.96x107N/m2 and El = 68.95x10gN/m2 and (E2/El)=0.4286. A numerical 

analysis of the transient response of this beam is performed using direct energy 

minimization at each time step. For the purposes of the integration of strain 

energy the two different Gaussian quadrature schemes shown in Fig. 4d are employed. 

Figures 5 and 6 bring out quite vividly the differences in the response 

resulting from the use of the two integration schemes. It must be remarked 

that the deformation-time plots for the two schemes are very nearly identical 

and hence are not shown. The same cannot be said of the acceleration or 

energy plots, however. As regards the acceleration-time plot, at certain 

instances the accelerations predicted by the two models can be seen to be off 

by as much as 100%. The nonlinear character of the model coupled with num- 

erical approximations defies predictions of trends in response as evidence 

by the crossing of the two response curves. The model with 16 Gauss points 

can, in general, be expected to provide a better estimate of dissipation 

than the model with 8 Gauss points. It can be seen from Fig. 6 that the model 

with 16 Gauss points predicts a higher dissipation than the model with 8 

Gauss points by as much as 15% over the interval considered. Again, this 

seems to be a peculiarity of these two models and in general one model which 

may at any given time predict a dissipation higher than the other may very 

likely also predict a dissipation lower than the other at another time. 



Next the sensitivity of the response of thin-walled frame elements is 

examined. Such elements can be expected to "tone down" the sensitivity of 

response, if any, to the order of the integration scheme. Figure 7 shows half 

the finite element model of a horizontal box beam supported on four uprights 

and loaded impulsively at the center. The beam and the supports are assumed to 

be made from the same material the stress-strain curve for which is similar to 

that of Fig. 2. For the purposes of numerical integration using Gaussian 

quadratures each wall of the box section is assumed to be divided into 

rectangular strips extending between the two nodes of a frame element with 

six degrees of freedom at each node. Table 2 lists the relevant properties 

of the model shown in Fig. 7. Two different integration schemes are employed - 

one in which each wall is divided into two strips and another in which the 

same is divided into four strips. As before a two point Gaussian quadrature 

formula is used in each direction. In the analysis, the effects of shear 

deformations are ignored in the interest of simplicity of the constitutive 

model in the inelastic range. An impulsive load is applied at node 3. 

Figure 8 shows the plots of acceleration versus time and Fig. 9 shows the 

plots of dissipative energy versus time for the two integration schemes. 

Although the response is very nearly identical in the initial stages the 

responses for the two cases diverge from each other significantly with the 

passage of time. As expected the structure is much less sensitive to the 

order of the integration scheme than the solid beam of Fig. 4. However, it 

is again evident that no trends can be determined since both integration schemes 

are only approximate. In fact, it would seem that as a result of the approxi- 

mations in calculations of the strain energies of deformations upper bound 

solutions, even for conforming finite element models, are not guaranteed. 

Thus one scheme may provide a better answer than the other at any given time 

but the higher order scheme may be expected to give better results overall. 

10 



IV. CONCLUSIONS 

This study has established the necessity of examining every finite 

element used for modeling structural behavior in the inelastic range, for 

consistency of assumptions that will guarantee satisfaction of equilibrium. 

Furthermore, this study has revealed that structures consisting of frame 

members wherein numerical integration has to be used for the purposes of 

evaluating stress resultants or strain energies will be sensitive as regards 

their accelerations and energy dissipations to the order of the numerical 

integration scheme used. This sensitivity can be expected to be more 

pronounced for frame members with solid cross-section in comoarison with 

thin-walled members. This study demonstrates the need for higher order 

integration schemes for improved quality of response in the nonlinear range. 

Such higher order integration schemes however, would only make the already 

expensive numerical analysis of nonlinear response only more so. 

11 
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Table 1: Comparison of Beam Response for Various Integration Schemes 

F ip Deflection Recoverable Energy Dissipative Energy 
-c 

2 

2 

2 

2 

- 

sj 

171.19222 

s1 

Exact .122489 .587835 

Gauss with 
32 stress 
ref. pts/ 
element . 

.13313 .58667 171.1086 

Gauss with 
16 stress 
ref. pts/ 
element 

.06848 .63969 170.6667 

* Newton-totes 
with 32 
stress ref. 
pts./element 

.15733 .53067 159.5500 

s2 

69.8933 16.0936 

s’2 

105.2099 

69.8933 19.5555 85.24097 

67.6774 0.5803 109.20314 

55.6100 37.0460 87.7340 

where s1 = - 0.8466, s2 = - 1.0582 

_ _ -___ ---.-. 
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odes Y 
m 

Lumped Mass 
Kilogram 

Length 
m 

X Element 
m Ol D2 

cm cm 

0.8001 1 3.81 1.463 

2.7051 0.0 2 3.81 1.463 

0.0 0.762 0.07793t 3 2.9261 7.62 

0.40005 0.762 0.07793 4 2.9261 7.62 

1.7526 0.762 0.1852 5 2.9261 7.62 

0.8001 0.762 0.14988 6 2.9261 7.62 

2.7051 0.762 IO.11138 

tA non-structural mass of 0.07793 kilogram is assumed to exist at node 3. 

0.0 0.7620 

0.7620 

0.40005 

0.40005 

0.9525 

0,9525 

Table 2. Properties of the Beam on Elastic Supports 

.0704 

.0704 

.141 

.141 

.141 

.141 
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Z 

% 
"I 

c/I' -* 
"2 

'"(5)=(1-5)u1+s u2, E=x/n. 

~(5)=(1-3~~+25~)~~+1(5-2~~+~~)e~+(3~~-25~)~~+~(-~~+~~)e~ 

Figure 1.a. Two Noded Beam-Column Element 

Figure 1.b. Three Noded Beam-Cblumn Element 
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Y,W 

Figure 2a. A Cantilever Beam with a Moment at the Tip 

Figure 2b. Stress-Strain Curve (Tension and Compression) 

16 



. 
GAUSS 

---m-d 
l . 

POINT . . 
w----e 

. . 
. . 

Figure 3. Strain Distribution over the Beam Cross-Section 

17 



Impulsive load P (see Fig. 4c below) 

< l/2 \/ l/2 3 b 
t-i 

V 
I = .508m, b = .0254m, 

---- 
*X b 5 = density = 0.00774 kg/cm3 

II Equally spaced nodes - IO Elements 

a. A typical Beam clamped at both ends b. Beam cross-sect ion 

AT.2241 x IO6 Newtons R}z(m 

t=o t = 5 x 16~ t = 1.0 x 16~ (seconds) Scheme I Scheme II 

c. Variation of load P d. Strain energy integration schemes 

Figure 4. A Solid Cross-Section Beam Under an Impulsive Load 
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1: 
Figure 5. Acceleration-Time Signature of Node 6 (Fig. 4a). 
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Figure 6. Dissipative Energy Versus Time (Fig. 4a). 



Figure 7.a. 

Isl 

C 2 

0 I 

Finite Element Model of a Beam on Elastic Supports 

A typical strip 

Four Gauss points per strip 

Figure 7.b. Gauss Point Distribution for a Box Section 
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0 64 Gauss Points / Element 

-30 

t 

A 32 Gauss Points / Element 

Figure 8. Acceleration-Time Signature of Node 3 (Fig. 7). 
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Figure 9. Dissipative Energy Versus Time (Fig. 7). 



APPENDIX A 

Consider an Euler-Bernoulli beam subjected to end shears and moments. 

For analyzing the response of this beam,its deformations are referenced 

with respect to an axis which does not coincide with its centroidal axis 

around which it bends. This axis is designated as the reference axis. 

The potential energy expression for such a beam is given by 

'= ; '0 
' E. [du - z $,2dAdx-Plw(0)-P2w(a)-Ml$(O)-M2 g(k) 

2 dx (A-1 1 

which upon performing the integration with respect to the area of cross- 

section reduces to 

71 = y 1' ($)2dx-ETA ' du d2w 

0 
/ (-)(-)dx + F / ' d2w 2 

0 dx dx2 
( + dx-Plw(0)-P2w(k) 

0 dx 

-Ml + - M2 w (A-2) 

where ?A and I are respectively the first and the second moments of the 

area about the reference axis. 

Upon requiring that the variation, 6~, of the potential energy vanish 

the necessary Euler-Lagrange equations or the equations of equilibrium of 

the beam are obtained. Thus, 

G~T=EA ' du ' du 0' (&6($$dx-ETA ; (@( $)dx-ETA 8'"($)($)dx 

+EI 1 ( Oa $)s($)dx-P16w(0)-P26w(k)-M&(O)) - M2&g))=0 (A-3) 

24 



After integrating by parts the following equations and boundary conditions 

are obtained. 

EI d4w ETA d3u.z 0 
dx4 dX3 

(A-4a) 

EA !s 
dx2 

_ ETA d3w = 0 
dx3 

Either 

E/J!!@ _ Ez/l, h = 0 
dx2 

or - 

u(0) = u8 

(A-4b) 

w(0) = wo” 

EId2,o _ ET/J !!f$ = - Ml 
dx2 

dw(O)= e* 
dx 0 

(A-E;a,f) 

EAw _ ETA d2wo = 0 
dx2 

u(a) = u*a 

~1d3w(R)_ _ ETA d2u(9,1 = - 
dx3 dx2 

P2 

E&d _ ET/?, w = M2 
dx2 

W(L) = w; 

%(a, = 0; 

The starred quantities in the above equations denote prescribed quantities. 

25 
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APPENDIX B 

a. Cantilever Beam Modeled with a Two-Noded Beam Element: 

The two noded beam-column element of Fig. 1.a. is used to model 

a cantilever beam subjected to a load P at its free end. The potential 

energy for such a beam is given by Eq. (A-l) with P1=Ml=M2=0 and P2=-P. 

It can be easily verified that the substitution of expressions for u(s) 

and w(5) from Fig. 1.a. into this potential energy expression yields 

+ H- [12+12w1e1a-24w1w2t12w1a2~t4+2-12w2e1~ 
2k3 

+4ele2" 
2 

+ 12w2 
2 22 

-12w2e2!2+4e2!L ] + Pw2 (B-1 > 

Upon requiring that the variation of IT with respect to the nodal variables 

ul, u2, wl, w2, and el, e2 be zero the following equations are obtained. 

Either 

$ ul-u2)+ 9 (e2-el)=O 

or - 

ul=uf 

F( - u2-u1 )+ y(el-e2)=0 u2=u$ 

30 2( wl-w2)+6a(e,-e2)]=0 wl=wy 
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Either 

y12t w2-wl)-6a(el+e2)J+P=0 

F (u2-ul)%[6(w1-w2)+2a(2el+e2)]=0 
R 

ETA 
II (ul-U2)+~[6(wl-w2)+2a(el+2~2~1=0 

!L2 

or - 

w2=w; 

(B-2a,f) 

el=ef 

e2=e$ 

Since, for the cantilever beam the nodal displacements ul, w1 and el 

are all prescribed to be zero the three equations corresponding to unknown 

displacements u2, w2 and e2 simplify to 

u2=re2 

F(12w2-6e2a)+P=0 (B-3a,c) 

- 
-F u2f%( -6w2+4e2k)=0 

R 

The above three equations when solved simultaneously yield the following 

results 

e2 = Pa2 -- 
2E1, 

(B-4a,c) 
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where 1,=1-A% 

d2w Furthermore, 7 at the free end (i.e. at x=a) which is proportional to the 
dx‘ 

bending moment at the free end can now be evaluated to be 

Clearly, the above results reduce to the correct strength of materials results 

if I,=1 which is to say the reference axis coincides with the centroidal axis. 

(B-4d) 

b. Cantilever Beam Modeled with a Three-Noded Beam Element: 

The expression for the potential energy in this case becomes 

TT = 2 [; ug u;+;- F u1 u2+gu1 u3- y u2u3] 

y [4 ulwl-8u2w1+4u3wl+3ulel~-4u2elg+u3elR-4ulw2+8u2w2 

t 3 [12w:+12wlela-24wlw2+12wle2e+4e~~2-12w2el~~4ele2~2 

2 22 +12w2-12w2e2L +4e2R ] + Pw2 (B-5) 

Upon requiring that the variation of 7~ with respect to the nodal variables 

ul, u2' u3, wl, w2 and el, e2 be zero the equations corresponding to the 

unknown variables u2, u3, w2 and e2 are 
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9: p (161+- $u3) - %(8w2-4e2a)=0 
R 

u3: J$ (- !+ u2$ u3)- y(-4w2t3e2a)=0 

(B-6a,d) 

w2: - %$8u2-4u3)tF(12w2-6e2a)tP=0 

e2: - F ( -4u2t3u3)$-( -6w2+4e2!z)=0 

Simultaneous solution of these equations yields 

u3 = 

u2 = 

PL3 
w2=- 3EI, 

e2 = Pi2 -- 
2E1, 

(B-7a,d) 

These are identical with the well known strength of materials results. 
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